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AESTRACT 

The numerical solution of the second-order, elliptic, quasi-linear, partial differential 
equation arising in a two-dimensional magnetostatic-field problem, where the mag- 
netic permeability varies with the field, is considered. A set of nonlinear difference 
equations approximating the original differential equation is derived, and in solving 
a test problem, the method of nonlinear successive overrelaxation compares favorably 
both to Newton’s method and to a commonly used method based on a small- 
magnetic-field approximation. The first method, as here presented, could also be 
used to numerically solve similar equations, such as those for Plateau’s problem or 
for irrotational compressible fluid flow. 

1. INTRODUCTION 

In this paper, the numerical solution of the second-order, elliptic, quasi-linear, 
partial differential equation arising in two-dimensional magnetostatic field prob- 
lems is discussed. The type of problems considered are those arising, for example, 
in the design of particle accelerators where the desired magnetic field strength is 
so large as to be principally in the domain of nonlinear behavior of the magnetic 
material. For such a problem, the usual successive-approximation methods [l] 
based on the technique of linearizing about small magnetic fields may be inade- 
quate, and a technique involving the more essential nonlinear features should 
be used. 

1 This work was done under the auspices of the U. S. Atomic Energy Commission. 
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A numerical method of the latter type is presented, which is based on the itera- 
tive solution (by nonlinear successive overrelaxation) of a set of nonlinear dif- 
ference equations approximating the differential equation. Nonlinear successive 
overrelaxation was recently investigated by Ortega and Rockoff (or, as they 
more specifically describe it, extrapolated Gauss-Seidel-Newton iteration), and 
they found that the method compared favorably to other methods in solving a 
mildly nonlinear elliptic equation 121. The method presented here for a quasi- 
linear equation is similar to those proposed by Lieberstein [3], Schechter [4], 
and Greenspan [5], but the approximating difference equations are set up differ- 
ently. The performance of the method in numerically solving a sample problem 
is compared to those of the usual small-magnetic-field approach and of Newton’s 
method. The results show that the method described here is better for solving 
the sample problem. The method, could be used to numerically solve other prob- 
lems governed by a similar quasi-linear differential equation, such as Plateau’s 
problem, or that of irrotational compressible fluid flow. 

II, FORMULATION 

Consider a two-dimensional simply-connected region R in the x-y plane with 
boundary F. Let a current density in the z direction J(x, y) = J(x, y)k be given 
in R; then the magnetic vector potential A(x, y) = ,4(x, y)k satisfies 

17 l @VA) = - 4nJin R, (1) 

and the magnetic field B is given by B = P X A = (dA/dy)i - (aA/i3x)j. The 
quantity y is the magnetic reluctivity (reciprocal of the magnetic permeability 
CL) of the material occupying R, and is a given function of ( B j2. Since in two 
dimensions, ( B I2 = (l7 X A I2 = AZ2 + AU2 = j VA 12, y is a function of ) I7A /*, 
so that when the differentiations in Eq. (1) are performed, the equation becomes 

[y + 2y’A,7A, + 4y’A,A,A, + [y + 2y’A,2]A, = - 47cJ, (14 

where the prime denotes differentiation with respect to / VA j2, and the subscripts 
denote partial differentiation. The reluctivity for ideal materials satisfies 

M>y>m>O and M’2y+2y’]t7A]22m’>0 

and hence Eq. (1) is quasi-linear and uniformly elliptic. The boundary conditions 
for A are normally that A equals A,, a constant, (no flux leakage) along a por- 
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tion or all of J’, and that dA/dn, the normal derivative of A, is zero (symmetry 
condition) along the remainder of I: 

The problem may also be formulated in variational terms. Find a function 
A(x, u), twice differentiable in R satisfying the boundary conditions on r, that 
minimizes the integral 

I= 
s.i 

R [g( / l7A I”) - 8nJA] dx dy . 

The given function g( / l7A 1”) is proportional to the magnetostatic energy and is 
related to the reluctivity by 

y =dg/d(IVAj2). (3) 

Equation (1) is the Euler equation corresponding to Eq. (2). 
In accelerator-design problems, R is usually divided into two regions, RI 

and R,, by a curve r,, and Eq. (1) [or Eq. (2)] holds separately for each region. 
The regions are characterized by different permeability functions. For region RI, 
which is the region occupied by the ferromagnetic material, y varies with j I7A 12, 
whereas for region Rz, which is not occupied by ferromagnetic materials, y is 
identically 1. In region R,, Eq. (1) simplifies to the Poisson equation, and cor- 
respondingly, g( / I74 1”) in Eq. (2) simplifies to j VA j2. The appropriate matching 
condition along r, is that @A/&z) and A be continuous. In the usual case, 
one has J = 0 in region R, and J + 0 in region R,. 

The numerical solution of Eq. (1) inside of region Rz presents little problem, 
since standard finite-difference methods for the Laplace operator can be used. 
The main difficulty arises in region R, , where Eq. (1) is not linear. Methods com- 
monly in use today for solving Eq. (1) are based upon obtaining the succession 
of linear approximating equations for A %+l, the (n + l)th approximation to A, 

I7 - (ynC’An+‘) = - 47~5, (4) 

where y’” denotes y as calculated from the nth approximation to A. Such methods, 
however, can be slowly converging or unstable when the range of A is such that 
y differs significantly from a constant over R,; this is the case when the current 
density J in region R, is large enough to partly saturate the magnetic material 
in R, [6]. 

In this paper another method of solving Eq. (1) is investigated which takes into 
account variations of y with 1 VA 12. The method essentially corresponds to New- 
ton’s method, which obtains A %+l, the (n + 1)th approximation to A, by solving 
the equation 

V - [ynv(An + E) + 2(l7A” . Ve)(yn)’ VA*] = - 47cJ (5) 
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for the quantity E, subject to the appropriate boundary conditions, and adding 
it to An, 

Aa+1 = A” + E. 

Equation (5) is derived from Eq. (1) by neglecting all terms O(s2). Notice that 
Eq. (4) lacks the term containing (7”)’ in Eq. (5). Thus, it is a special case of Eq. 
(5) when the term containing (y”)’ is negligible in comparison to the other retained 
terms, which is the case when the magnetic field is small and y is nearly constant. 

In the following sections, a set of nonlinear difference equations is derived to 
approximate Eq. (l), and methods of solution using successive approximations 
analogous to Eqs. (4) and (5) are compared for a sample problem. 

III. FINITE-DIFFERENCE EQUATIONS 

The finite-difference equations corresponding to Eq. (1) for a rectangular mesh 
are given in this section, and these equations are the only ones explicitly discussed 
in the remainder of the paper. The same method of solution may be applied to 
other mesh configurations as well [6]. 

Let the region R be covered with a rectangular mesh (not necessarily uniformly 
spaced) parallel to the x and y directions, and, to avoid the additional complica- 
tions of boundary interpolation, let the lines intersect J’ and r, only at mesh 
points. Replace any curved portion of r and r, with a polgyonal one consisting 
of the chords joining adjacent mesh points. The region R is thus divided into 
rectangular mesh cells in its interior and either rectangular or right-triangular 
mesh cells at the boundary and interfaces, with each cell lying entirely in either 
RI or R, ([7], Sec. 6.3). Let the x and y mesh spacings be denoted by 

hi = xi - ~i-~ and kj = yj - yjml, (6) 

respectively. The difference equations satisfied by Ai,j, the discrete approximation 
to A(x, y), can be derived by first considering a discrete analog to the variational 
form of the problem, Eq. (2). From this (Ritz method), a set of nonlinear dif- 
ference equations can then be obtained corresponding to Eq. (1). 

Approximate the integral in Eq. (2) by taking the integrand to be constant over 
each mesh cell. Then the integral is replaced by the sum 

I 0 Z [g( ] VA 1”) - 8nJA], x area,, (7) 

where the sum is taken over all cells into which R has been divided. The specific 
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form of each term in the sum will depend upon whether the corresponding cell 
is rectangular or triangular. 

If the rth cell is rectangular, the appropriate value of the integrand to use is 
its value at the center of the cell (midpoint rule). The explicit expression for the 
term corresponding to cell <,? [the one with center at (xi-r + $hi, yi.., + Sk,); 
see Fig. l] that is used here is 

k( I VA 1’) - 8nJ& = g( I VA /2i,i) - 87d&4,j, (8) 

I I 

Y I 
FIG. 1. General rectangular cell. 

where 

) (9) 

an approximation giving ) VA I2 at the center of the cell to @hi2 -k kj2), 

A,,j = ;~(AI,~ + Ai-l,j + Ai,+ + Ai-l,j-I), 

and Ji,i is the given value for the average current density J crossing cellr,j. The 
area of the cell is 

areai,j = hikj. 

If the x and y differences of Ai,j are denoted by 

f&j = Ai .i - h-1 1 d-d’- Ai,j - Ai,j-1 
hi 

and Vi,j = kj ’ 
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then Eq. (9) can be written more simply as 

I I7A 12i,j = a-& + @,,-I + $,j + $-1,j). (10) 

If the rth cell is right-triangular, the corresponding explicit expression in Eq. 
(7) depends upon the orientation of the triangle. For example, for cellr,i,rrI (the 
one with its right angle in the third quadrant of rectangular cellr,j; see Fig. 2), 
the expression is 

k( I PA I”) - ~~J~~,~,III = d I VA 12~.~,d - ~~J~J,III&,~,III 3 (11) 

where 
I VA 12i,j,III = St-1 + &iY (12) 

~i,i,III = B&1+1 + wi-l,j + -4,j-A (13) 

and Ji.j.111 is the given 
The area of the cell is 

value for the average current density crossing cellr,j, III. 

X 

Fro. 2. Triangular cell. 

The choice for Ar,j,rII is made so that the formulas for the triangular and rectan- 
gular regions are consistent, The formula for ) l7A I2 for the triangle is in general 
only first order, however, since it is determined by three, rather than four values 
of A. 

The difference equations corresponding to Eq. (1) are then obtained by requiring 
that the partial deriative of I with respect to each of the unknown values of Aij 
in Eq. (7) be zero. The resulting equation obtained for a general interior mesh 
point surrounded by four rectangles is 
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where Eq. (3) was used to substitute for dg/d( j VA 1”). Here yij denotes the re- 
luctivity evaluated for cellrj with the use of Eq. (10). Equation (14) is, in general, 
a nonlinear one relating each A, to its eight neighbors, Ai*l,j*l, Ai,jfl, and 
Aikl,j. When y is a constant, the equation reduces to that derived from the usual 
five-point difference approximation to the Poisson equation. 

For points along an interface or boundary bordered by triangular regions, the 
resulting equations are slightly more complex. For example, the equation for Aij 
in Fig. 3 is 

Ai-l, 

FIG. 3. Interface bordered with triangular cells. 

This equation also relates A, to its eight neighbors, and reduces to the usual 
five-point formula when y is a constant. 

For boundary points along which dA/dn = 0, the obtained finite-difference 
equations automatically correspond to this boundary condition, because it is 
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the natural one for the variational problem. For boundary points along which 
A = A, (a constant), an additional nonlinear finite-difference equation may be 
obtained for A, by considering it to be unknown. This equation would correspond 
to the application of Ampere’s law to the entire region R, and it may be used dur- 
ing the iterative solution of the problem to improve convergence by adjusting A, 
to correspond to the current approximate solution for A [8]. 

Because Eq. (10) or Eq. (12) was used to approximate 1 l7A 12, the same finite- 
difference equations as those derived above could have been derived by using 
the line-integral equivalent to Eq. (1) obtained by the application of Green’s 
theorem (in this case, Ampere’s law) to each auxiliary mesh region, and approx- 
imating the normal derivatives by central differences ([7], Sect. 6.4). This method 
would be equivalent to the variational one used above, and in some cases may be 
algebraically more convenient. The main features to note here are that y is a func- 
tion of the unknown A values, making Eq. (14) and alterations such as Eq. (15) 
nonlinear in general, and that 1 I7A j2 is given by Eq. (10) or (12). The Jacobian 
matrix of the difference equations is symmetric and although, in general, it is 
not diagonally dominant, its positive-definiteness follows from Schechter’s ar- 
guments ([4], Sec. 9) when they are applied to the differencing scheme used here. 

IV. SOLUTION OF DIFFERENCE EQUATIONS 

The task of solving the simultaneous nonlinear difference equations-Eq. (14) 
for general interior points, and possible alterations such as Eq. (15) for points 
near interfaces and boundaries-is approached by the commonly used small- 
magnetic-field method by taking y to be a known function at each iteration, as 
calculated from A at previous iterations, 

yt,j = y&l - wl[y;,’ - y( 1 VA” [$J]. (16) 

This method, which is the discrete analog to Eq. (4), then solves (or approximately 
solves) the resulting set of linear equations to obtain the next approximation for 
A. The comparison methods of interest here are based essentially on Newton’s 
method, the discrete analog to Eq. (5), which linearizes the equations taking into 
account the dependence of y on the unknown A values. 

Newton’s method for solving fii = 0 gives Ap, the (k + 1)th approximation 
to A,, as 

&l z Ak. + & a3 v 4) ? 
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where the E$ satisfy the set of linear equations 

Equation (17) is a nine-point difference approximation to Eq. (5), having a coef- 
ficient matrix that is positive-definite, symmetric, and block-tridiagonal, each 
block of which is itself tridiagonal. It need be solved only approximately at each 
step before computing the next Newton’s iterate. 

The computational scheme of special interest is that of nonlinear successive 
overrelaxation, which is [2]-[5] 

and is equivalent to performing one sweep with successive point overrelaxation 
on Eq. (17) when the second derivatives off& do not vary much. Notice that only 
the diagonal coefficients of Eq. (17) need be computed with this scheme, but that 
these and f must be updated each time a new A value is calculated. The method 
is equivalent to performing one Newton’s iteration on each equation fij = 0, 
successively, considering A, to be the only unknown and using the latest available 
values for the other values of A. Kronrod has suggested a variation of the method, 
in which one Steffensen’s iteration rather than one Newton’s iteration is performed 
on each equation [9]; his method may be a useful substitute when afij/dAij cannot 
be easily calculated. 

The explicit expression for afij/aAii for an interior mesh point surrounded by 
four rectangles is obtained by differentiating Eq. (14), and is 

(19) 

where rki denotes the derivative of y with respect to ) VA I2 evaluated for cellrj. 
Corresponding expressions for points along an interface or boundary bordered 
by triangular regions are of the same form but, in general, may contain fewer or 
more terms. 
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V. COMPARISON AND RESULTS 

The above methods were compared for the solution of a test problem having 
some of the essential features encountered in the ferromagnetic region R, of 
an actual accelerator-design problem. Let the square region 0 ( x I 1, 0 ( y 
I 1 be entirely occupied by a ferromagnetic substance with reluctivity y(w) 
= (1O-4 + w)/(l + w), where w = ( f7A I2 (Fig. 4). Let the current density J 
be identically zero and the boundary conditions on A be that A = 0 for x = 0 
and y = 1; A = 0.05 sin(n&x) for y = 0; and @A/ax) = 0 for x = 1. The num- 
ber 0.05 is chosen so that w is of the order of 10-2, so that y, in turn, varies sig- 
nificantly over the rectangle, and the ratio of the second to the first term on the 
left of Eq. (5) is maximized. Finally, let the region be covered with a uniform 
square mesh so that h = k = l/n and Xi = ih, yj = jh. 

A=0 (l,l) 

A=0 

CO,O) ’ A = 0.05 sin (TX/~) 

FIG. 4. Test problem. 

The results of the various numerical methods for solving this test problem are 
shown in Table I for the case where the initial approximation to A was the so- 
lution to the linear problem (constant y), 

A = 0.05 sin(n&x) sinh[nt(l - y)] 
sinh an 

_-. 

The calculations were performed on the IBM 7094 by means of a FORTRAN IV 
program. Two meshes were considered: one containing 90 unknown points 
(n = 10) and the other containing 870 unknown points (n = 30). The convergence 
criterion in the former case was that the sum of the squares of the residuals be 
less than 10-13, and in the latter that it be less than lo-12. These correspond to 
an average residual at each point of the order of 1O-6 of the maximum value of A. 
The iterations were ordered by letting i increase through all its values for each 
successively larger value of j. For each method, an optimal value of the relaxation 
factor was found for fastest convergence. 
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TABLE I 

COMPARISON OF NUMERICAL METHODS 

Newton Nonlinear 
successive 

Small-field 

Point Line overrelaxation approximation 

Min./iteration 0.0011 0.0013 0.0012 0.0004 

90 points %pt 1.54 1.52 1.54 0.35 (WI) 

ZRes.% < lo-l3 Iterations to converge 21 20 18 41 

Min. to converge 0.024 0.025 0.021 0.018 

Min./iteration 0.0099 0.0112 0.0117 0.0040 

870 points %pt 1.80 1.77 1.82 0.30(0,) 

ZRes.a < lo-l2 Iterations to converge 98 101 58 >400 

Min. to converge 0.97 1.13 0.68 >1.60 

Two columns of Table I are for Newton’s method [Eq. (17)]. Successive-point 
overrelaxation was used in the first, and successive-block overrelaxation in the 
second, with the relaxation factor u). It was found that for optimal convergence 
it was sufficient to take only one overrelaxation sweep for each Newton iteration, 
signifying it was not worth solving the Newton steps too well. 

Another column is for the nonlinear successive-overrelaxation method [Eq. 
(lS)]. The iteration behaved quite stably with respect to changes in o and in the 
initial approximation for A, and it was possible to achieve convergence with larg- 
er values of w than for Newton’s method, especially for the larger problem. It 
was found also that the centered-difference formula for 1 l7A /2ii [Eq. (IO)] gave 
better results than the lower-order, one-sided formulas suggested elsewhere [3]-[5]. 

The last column is for the small-magnetic-field approximation [Eqs. (4) and 
(16)], for which the iterative equations can be obtained by setting y’ = 0 in 
i3fii/atl, in Eq. (18). One Gauss-Seidel iteration (w = 1) is performed using the 
set of yf,j calculated from Eq. (16). It was found that in order for the process to 
converge it is necessary to underrelax the new values of y by choosing ol, the 
relaxation parameter in Eq. (16), to be less than one. The method did not behave 
as stably as the other methods with respect to changes in the initial approximation 
or in the relaxation parameters. Although, in some cases, it was possible to speed 
convergence by choosing a value of u greater than one and a smaller value of 
w1 without the iterations diverging, for stable behavior, in general, it is necessary 
to use the method with o not much greater than about one [6]. 
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Examination of the results shows that the methods based on the nonlinear dif- 
ference equations compete favorably with the small-magnetic-field approximation. 
Among the former methods, nonlinear successive overrelaxation performed the 
best. The number of iterations required for convergence was smaller than that 
required by Newton’s method, and the total computer time used was less. The 
residuals decreased more uniformly during the iterations than they did with New- 
ton’s method. Nonlinear successive overrelaxation is also easier to program than 
is Newton’s method, because only the diagonal elements of the Jacobian matrix 
need be computed. 

Experience with the test problem has indicated, in addition, that for the cen- 
tered-differencing scheme presented here, the optimal overrelaxation parameter o 
for nonlinear successive overrelaxation could be estimated by using the asympto- 
tically optimal parameter-that is, the limiting parameter that yields fastest con- 
vergence in a small neighborhood of the solution, This asymptotic parameter 
could, in turn, be estimated by using the relationship valid for estimating the op- 
timal parameter for linear point successive overrelaxation applied to a matrix 
possessing “Property (A)” ([6]; also [lo], Sec. 22.1). In fact, the entire iteration 
proceeded in a manner that is qualitatively the same as the behavior of such a 
problem. If y is a function of x and y, the method reduces to linear point succes- 
sive overrelaxation on a matrix with Property (A), but for y a function of 1 I7’A I2 
the Jacobian matrix, although it is block tridiagonal, does not, in general, have 
Property (A). 

The optimal asymptotic parameter estimated from the Property (A) relationship 
agreed, nevertheless, with the actual observed optimal w for the test problem to 
within one digit in the last of the three significant figures used. Of course, in order 
to obtain convergence for a poor initial approximation, it may be necessary to 
first use an overrelaxation parameter smaller than the optimal asymptotic one 
during the beginning iterations and then set w at its optimal value later. 

Parallel results for estimating the optimal relaxation parameters for the small- 
magnetic-field approximation could not be obtained. Thus, nonlinear successive 
overrelaxation recommends itself strongly over this method because, in addition 
to being more stable, it need not rely entirely on trial-and-error for determining 
optimal parameters. From these results, nonlinear successive overrelaxation shows 
itself to be a most promising tool for solving this type of elliptic equation. 

One of the referees commented that he had been unable to obtain convergence 
in solving magnetostatic problems using the small-field approximation method 
when there were currents in the ferromagnetic region, and that it would thus be 
of interest to know how the method proposed here using nonlinear successive 
overrelaxation would work on a test problem in which J $ 0. Additional test 
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problems were run with nonzero currents and no difference was observed in the 
general behavior of the method. For the test problem with 90 points (n 7 IO), 
boundary conditions A = 0 on x = 0, y = 0, y = 1, and dA/dx = 0 on x = I, 

and all currents zero except Ja,a = - .I?,$ = 0.002-47 iterations are required 
to converge (c Res.2 < 10-13) from an initial approximation of A = 0 with 
CO=CO opt = 1.61. The range of A and of / VA I2 for this problem are essentially 
the same as for those described in Table 1. The larger number of iterations required 
to converge in this case is due in large part to the poorer initial approximation. 
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